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Abstract 

In this paper, we use the method of Benson and Feshbach outlined in “Stable splittings of 
classifying spaces of finite groups” (in Topology, Vol. 3 1, No. 1 (1992)) to give the complete, 
2-complete stable splitting of the classifying space BP for all but two of the groups P of order 
thirty-two which are not direct products in a nontrivial way. One of these two is Z/32, and 
B(Z/32) is known to be indecomposable. For the other, P is the semidirect product of (Z/2)4 
and Z/2. This is the only nonabelian group of order 32 which is not a direct product and has a 
subgroup isomorphic to (Z/2)4. We also give some results which refine the method of Benson 
and Feshbach. We have found that BP is indecomposable for three of these groups, and these 
are the first examples of indecomposable BP for which P is a nonabelian 2-group. Poincak 
series are given for each classifying space using Rusin’s paper “The cohomology of the groups 
of order 32” (Mathematics of Computation, Vol. 53, No. 187 (1989)). 

0. Introduction 

In this paper, we give the complete, 2-complete stable splitting of the classifying 
space BP for all but two of the groups P of order thirty-two which are not direct 

products in a nontrivial way. One of these two is Z/32, and B(Z/32) is known to 

be indecomposable. For the other, P is the semidirect product of (Z/2)4 and Z/2. 
This is the only nonabelian group of order 32 which is not a direct product and has 

a subgroup isomorphic to (Z/2)4. There are 32 such groups P. The main reason we 
chose these groups to consider was to find indecomposable BP for which P was not 
cyclic. It turns out that BP is indecomposable for three of these groups, and these are 

the first examples of indecomposable BP for which P is a nonabelian 2-group. This is 

interesting in light of Theorems 1.7 and 1.8 of [9], which together imply that, for all 
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n 2 2, ‘almost all’ p-groups P of Frattini length n have indecomposable classifying 

spaces. 

Stable splittings have been provided for some groups P of order 32, although not 

all of these have been complete splittings. These include the abelian groups (see 

[8]), the extra-special groups (see [4, 5]), the dihedral group &2, the CpteITIiOn 

group Q32 (see [13]), Z/4sZ/2, the semihedral group SD32, and the quasidihedral 

group (see [ll]). We give complete splittings for all of these except the abelian 

groups. 

We use the method of Benson and Feshbach outlined in their paper ‘Stable splittings 

of classifying spaces of finite groups’ (see [l]). The foundation for this method is a 

generalization of Segal’s conjecture proved by Lewis et al. [lo], which asserts that 

the p-completion of the double Burnside ring A(P,P) is isomorphic to the ring of 

p-complete stable maps {BP,BP}. A consequence of this is that there is a one-to-one 

correspondence between the simple i(P, P)-modules and the indecomposable stable 

summands of BP, where x(P,P) = Z/p@A(P, P). Benson and Feshbach show how to 

find stable splittings by giving a method for constructing the simple A(P, P)-modules. 

As opposed to most other methods of finding stable splittings, this method makes no 

explicit use of cohomology. 

Although we are mostly interested in what happens when p = 2, the general theory 

outlined in [l] holds for any prime p, and so throughout this paper, P is an arbitrary 

p-group, BP stands for the p-completion of the suspension spectrum of the classifying 

space with disjoint basepoint attached, and {BP,BP} the ring of (p-complete) maps 

from BP to itself. In particular, Bl is the sphere spectrum So, and appears as a stable 
- 

summand of BP for all P. We let BP = BP/Bl, so that BP cv BlV@. Unless otherwise 

specified, all maps and spectra are in the homotopy category of p-complete spectra. 

We let ‘K denote the conjugate xKx_’ of a group K, and S will always be a simple 

FpOutK-module. 

Section 1 is a short section of preliminaries. In Section 2, we outline the method 

of [l]. Section 3 contains some results from [2] which refine the method of [l]. Two 

examples of complete splittings are outlined in Section 4, including one case where 

BP is indecomposable. Section 5 includes tables which give the stable splitting of 

BP for each P as described above, and the Poincare series for the indecomposable 

spectra which appear as summands of the spectra BP. For the most part, spectra 

will be labelled by their vertex and source (see [l], Section 5, or Section 2 be- 

low). The Poincare series are arrived at using Rusin’s paper ‘The cohomology of the 

groups of order 32’ (see [ 15]), which gives the Poincare series for all the groups of 

order 32. 

1. Preliminaries 

As is shown, for example, in Nishida [14, Section 41, a complete stable splitting 

BP N X, v . . . V X, corresponds to a primitive decomposition 1 = er + . . . + e, of the 
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identity in {BP,BP}, where the ei are primitive, mutually orthogonal idempotents in 

{BP, BP}. Given a splitting, an idempotent decomposition is given by letting ei = iioni, 

where i, is the inclusion of Xi into BP and nnr is the projection from BP onto Xi. We 

call ei the idempotent splitting Xi from BP, and write Xi = eiBP. We have Xi r~ xi iff 

ci is conjugate to ej iff ei{BP,BP} 2 ej{BP,BP}. As is shown by Lewis et al. in [lo], 

{BP,BP} rA^(P,P) = $ @A(P,P), and so stable splittings of BP also correspond to 

primitive idempotent decompositions of 1 in A^(P, P). Reducing &, to its residue field 

Z/p, we get maps 

{BP, BP} -% A^(P, P) -++ A(P, P) = z/p @ A(P, P) 

The idempotent refinement theorem then implies that an idempotent decomposition 

of 1 in {BP, BP} can be obtained by lifting a decomposition in i(P,P). We get a 

one-to-one correpondence between stable homotopy types of summands of BP and 

isomorphism types of simple i(P,P)-modules. Letting L; denote the image in i(P,P) 
of an idempotent ei in {BP, BP}, we have the multiplicity of eiBP as a wedge summand 

of BP equals the dimension of the simple x(P, P)-module corresponding to Ci over its 

endomorphism ring. As the endomorphism ring is a finite division ring, it is also a field. 

It follows that finding all the simple l(P,P)-modules and computing their dimensions 

over their endomorphism rings will give us a complete splitting of BP. A method 

for constructing all the simple $P,P)-modules, given P, is outlined by Benson and 

Feshbach in [l]. 

2. The method of Benson and Feshbach 

In this section, we outline the notation and main results from [l] which we use in 

finding our splittings. 

In [l], the authors construct i(P, P)-modules i(P,K) and &P,K, S) for each type 
of subgroup K of P and each simple F,OutK-module S. The definition of type is 

somewhat technical (see 4.3 of [l]), but in practice, type gives an only very slightly 

finer partition of the subgroups of P than isomorphism does. The &P, K, S) are either 

simple or zero (see 5.7 of [l]), and there are conditions for i(P,K, S) to be nonzero 

(see 5.2 of [l], or 2.3 below). 

As in [l], we denote the generators of x(P,P) as i~,b, where H F P and 4 is a 

homomorphism from H to P, and the generators of i(P, K) as f;u,,$, where K, K’ L P 
and $ is an isomorphism from K’ to K. The L(P,K) are also F,OutK-modules via the 

action y~.f-~,,~ = fp,gO*. The i(P, K,S) are defined as S @F,&~K &P, K)/d’, where 

S is a simple right F,OutK-module and JZ is defined in Definition 2.2. Lemma 2.1 

gives the structure of S @F,&~K &P,K) as an i(P, P)-module (see [l, Proposition 

4.81): 

Lemma 2.1. As F,-spaces, we hUfx s @&,OutK &‘,K) z @;=,s @F,OutK .fK& where 

II is the number of conjugacy classes of subgroups of P of the same type as K Ki 
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is a conjugacy class representative, and $i : Ki 5 K. The action of A-CP,P) on 
S @F,o~~K L(P,K) is given by 

(2.1) 

The sum here runs over double coset representatives x of K’ and H in P. The 

two conditions insure that $ o c, o 4-l is a well-defined homomorphism from the 

subgroup 4(“-‘K’) of P to P. The condition K’ 5 ‘H insures that $J is defined 

on I-‘K’. The ambiguity created by 4-l is in ‘-‘K’ f? ker 4, which is the trivial 

group under the second condition in the sum. Note that any double coset K’xH 

contains the coset xH. If K’ 5 ‘H, then “H = K’XH = K’xHx-‘, which implies 

that xH = K’xH. So, we may take the sum in 2.1 to be over coset representa- 

tives x E [P/H] satisfying the two conditions. Stabp(S) is the kernel of the com- 

position Np(K’) -+ Out(K’) E OutK + AutS, where the first map is induced by 

conjugation and the last by the right action of OutK on S. Note that the kernel 

of the first map is K’Cp(K’) and so K’Cp(K’) < Stabp(S), and that Stabp(S) de- 

pends on the subgroup K’ of P. In [l], following 4.8, the authors remark that for- 

mula (2.1) also holds if we ignore the condition Stabp(S) < ‘H, and only assume 

K’ < ‘H. 
The submodule JH in the definition of &P, K, S) is defined as follows ([l, Defini- 

tion 5.81): 

Definition 2.2. Let J%‘O equal nim,,, ker(&+,) which is an ,$P,P) submodule of 

S @F,oUtK ,?(P,K). Inductively, define JYi to be the preimage in S ‘@F,&tK L(P,K) of 

the submodule nim QgK ker([L,#) of S @F,btK I(P, K)/A’-1. AS j(P,P) is finite, we 

eventually have &‘i = Ai-1 and we let JZ = ./Hi for any such i. 

We remarked in [2] that, in the intersections in 2.2, we may assume Stab&Y) I L, 

since otherwise ker([L,b) = S @Q,oUtK L(P,K), by (2.1). 

If i(P, K, S) is simple, we let XK,,S denote the indecomposable summand of BP 
corresponding to i(P,K, S). We call K the vertex and S the source of the summand 

XK,,S. The vertex is uniquely determined up to the type of subgroup of P, and S 

is uniquely determined up to isomorphism by the summand XK,S (see 5.7 and 5.8 

of VI). 
The following result, which is similar to Corollary 4.1 of Martin0 and Priddy [12], 

gives equivalent conditions for which &P, K, S) is simple. The only real difference be- 

tween Theorem 2.3 and Theorem 5.2 of [l] is the additional condition Stabp(S) 5 H. 
As in [l, 141, we say that a summand X of BK is dominant if it is not equiv- 

alent to a summand of BK’ for K’ < K. We will let * denote the duality au- 

tomorphism of F,OutK given by g H g-’ and S* the left F,OutK-module dual 
to s. 
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Theorem 2.3. Let X be a dominant summand of BK with corresponding idempotent 
20 E Fp OutK and S the simple right F,OutK-module such that &S # 0. The following 

are equivalent: 
(i) X is equivalent to a summand eBP of BP. 

(ii) K is isomorphic to a subgroup K’ < P with the following properties. There is 

a split surjection 71 : H ---f K for some H < P, where Stabp(S) I H < P, and the 

element y E F,OutK given by 

Y= c 
K g K’ 2 .-‘K’ L) H -=, K 

XE[K’\P/Hl 
K’<‘H 

satisfies yS* # 0. Furthermore, the idempotent e splitting X from BP may be taken 
to factor through Bi : BK + BP. 

If condition (i) of Theorem 2.3 is satisfied, then X E XKJ. 

In practice, we will let K = K’. Also, note that condition (ii) is satisfied with a 

particular K’ iff it is satisfied with x-‘Kt, for any x E P, so we may assume that 

K’ < H and that the composition K’ L) H -% K’ is the identity. So, for instance, 

if H = P, we get y = idK< and K’ is obviously a vertex in this case. If y as in 

Theorem 2.3 satisfies yS* # 0 for a particular K = K’ 5 P, we say that K contributes 

to the multiplicity of X in BP, and call K a contributor or say that K contributes to 

BP. We have that a group G is a vertex of BP if and only if G is isomorphic to a 

subgroup K of P which is a contributor. Note that all subgroups of P isomorphic to G 

are referred to as vertices if any one of them is a contributor. However, not all need 

be contributors. 

Compare the expression for y in Theorem 2.3 with formula (2.1). Note that the 
q-1 

composition K g K’ - .-‘K’ of H -% K is an automorphism if and only if 

*-‘K’ f? ker rc = 1. So, the sum in the expression for y is over the same two conditions 

in the sum of (2.1). Thus, y will have the same number of nonzero summands as 

appear in the formula for i~,+(s @ SKI,,) for any isomorphism II/ : K’ + K. 
Lemma 2.1, Definition 2.2 and Theorem 2.3 are the main components of the method 

of [l]. For convenience, we also state two results which are closely derived from 5.9 

and 5.10 of [I], and which will be referred to in the next section. 

Proposition 2.4. Let X be a summand of BP with vertex K and source S. Let K’ 5 P 
with K’ Z K. If K’ contributes to the multiplicity of X in BP, then K’ is a direct 

summand of both StabP(S) and K’Cp(K’). 

The spectrum XK,~, is called the principal dominant summand of BK. 

Corollary 2.5. Let Fp denote the trivial F,OutK-module. Let K’ 5 P with K’ ” K. 
If K’ contributes to the multiplicity of the principal dominant summand of BK in BP, 
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then K’ is a direct summand of N&K’). In particular, if OutK is a p-group, then K’ 

being a contributor to BP implies that K’ is a direct summand of Np(K’). 

This follows directly from Proposition 2.4 and the fact that Stabp<F,) = N#‘). 

3. Refinements of the method 

The following two lemmas from [2] greatly simplify the implementation of the 

method of [l]. The first facilitates the calculation of &P,K, S). The second simpli- 

fies the calculation of the endomorphism ring of &P, K, S). It is similar in flavor to 

Proposition 1.4 of [12]. 

Lemma 3.1. In Definition 2.2, A? = A?0 

Lemma 3.2. Zf L(P, K, S) # 0, then 

EndAIP,P)(L(P,K, 9) 2 En+,oUt#) 

as vector spaces over Fp. 

Before proving these lemmas, we repeat some remarks concerning formula (2-l) 
which are made in [2]. Zn all of the following remarks, x is always a double coset 

representative of K’ and H in P satisfying the two conditions in (2.1). We let K, 

K’,H 5 P with K’ % K, and we assume all fmK,,+ are in ,?(P,K) and that C#I : H --H 

K. = K. 

Remark 3.3. Since the subgroup c&(H) = KO of P is isomorphic to K’, we must have 
that c$(“-‘K’) = 4(H) for all x, and so s @J ~,+(.-~,~,soC,c~_, = s @ ~KO,~OCxO~-~. Now, 

$ o c, o 4-l is an isomorphism from KO = tjf-‘K’) to K. We may write J/ o c, o 4-i = 

nx o $. where $0 : KO --% K and qx is an automorphism of K which depends on x. 

We have 

LY,Q+@f-&= c s @ f-l#lb(‘-‘K’),*ocrO&’ 
XE[K’\P/Hl 

K’<Stabp(S)<“H 

K’;1 *(km $J)= 1 

NOW, this can be done for any s 6~ f;(,,$. So, if we let m = c:=i Si 69 f;,,ti8 with 

Ki S K’ for all i, and let si be the element (~s~Q), we get 
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i=l 

(3.1) 

When applying (3.1), we denote the element c si by so and write [H, 4 .rn = so @fKO, tiO. 

Note that [H,$ . m may alSO eqUd t C3 f;o,tio for some t # SO. However, when we write 

iH.4 ’ m = SO 8 fmK&,.o’ we always mean for so to be equal to the element given by 

(3.1). 

Remark 3.4. Let a E F,OutKo. We may write a = ~~=, vi where the vi are (not 

necessarily distinct) automorphisms Of Ko. By [H,@ we mean & OH,,,&. !!hdirly, 

if a’ = c,“=, q; E F,OutK’, we let f-K,,tio,, = Cy=, feKJ,,,,. 

Let 11/, : K1 3 K and let I,$ : KO -% KI so that $0 = @I 0 9. Let m = s @ f;(,,$, 

and let cH,b . m = so 63 f;O,lLO as in (3.1). Note that I,$ o C#I is a homomorphism from H 

to KI. We get 

The same holds for any m E S &@,tK i(P,K). The upshot is that if [H,$ . m = 

so @ f;o,tio, there is a map 4’ : H --H KI so that &,$I .rn = SO @ fMK,,$, , where we can 

pick K, to be any subgroup of P isomorphic to K and $1 any isomorphism form KI 
to K. Now, let sI be any element of S and assume that the SO above is not zero. Since 

S is simple, there is a0 E F,OutK so that s1 = SOUO. We can write a0 0 $1 = $1 0 a* 

for some a E F,OutK,. Repeating the above argument with $ replaced by a 0 3, we 

get 

i H,llO&fJ .m =~o@f-~,,~,~d =SO@JSK,,~~~~, =sl @ fK,,$,. 

So, if so # 0, given any element of the form s1 @ fK,,$, , there is an element i E 

_&P,P) so that [.rn = sl @ff’,,,$,, and we can take [ to be of the form c cH,&, where 

4i(H) g K is constant in i 
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We now proceed to the proofs of Lemmas 3.1 and 3.2. 

Proof of Lemma 3.1. If A0 = S @F@tK&P,K), then JZ = S @F,OutKL(P,K) as 

well and we are done. So, assume (S @F,OutK &‘,K))/J@o # 0. Let m be an element 

of S @F,OutK i(P,K) which is not in JYO. Since m $! &o, the definition of -ko implies 

that there is a surjection 4 : L + KO so that CL,$ . m # 0, where K g Ko I P and 

L 5 P. By (3.1), we can write [L,$ . m = SO @ fKO,tiO where SO # 0 in S. 

As S @F,oUtK L(P,K) # A!o, there exists K’ Z K and s’ E S so that s’ @ fKj,$ !j! 

Jo. Since so # 0, Remark 3.4 implies there is an element i = CL1 IL,+, so that 

i . m = s’ @ fK!,$, where 4i(L) = K’ for all i. As s’ @ fK,,$ # ~20, we must have 

that CL,+, . m $ A0 for some i. So, by Definition 2.2, m $ Al. Therefore, Ai = 40 

which implies that A? = 40 0 

Proof of Lemma 3.2. Since i(P,K, S) # 0, it is simple, by 5.7 of [l]. So, we have 

a summand X of BP with vertex K and source S. Let i : X + BP and n: : BP + X 

satisfy n o i = idIxx) so that e = i o 7~ is the primitive idempotent splitting X from 

BP. By Lemma 4.1 of [14], 

{X,X} -% e{BP, BP}e 

via f H io f on. Since e is primitive, e{BP,BP}e is a local ring and so is {X,X}. The 

A composition (BP, BP} 5 A(P,P) ++ &P,P) sends e to e E $P,P), the primitive 

idempotent corresponding to i(P,K, S). We get a sequence of ring maps 

{X,X} -% e{BP,BP} e ++ &f(P,P)c? ” EndAlip,p)(i(P,P)C). 

As $P,P)C is the projective cover of ,?(P, K, S), we get that EndATP,p,(@, P)C) maps 

onto EndAiP,P)( 1 P,K, S)) which is a field. Since {X,X} is a local ring, we have that ( 

{X,X}/Rad{X,X} 2 End,T,,,&P, K, S). 

Now, let 20 E FpOutK be a primitive idempotent satisfying &S # 0. We get ;a 

equals the image of eo under the composition {BK, BK} -M &K, K) --H F,OutK, where 

eo E {BK, BK} is the primitive idempotent splitting X from BK. We have 

(X,X} ----t eo{BK, BK}eo + &,F,OutKZo 

g EndF,odGF,OutK) --*t EndFpdS) 

and so {X,X}/Rad{X,X} Z E n F,o~~K(S). The result follows 0 d 

We finish this section with some technical results from [2] which we will refer to in 

the following section. Many more such lemmas appear in [2]. The first three lemmas 

concern computing ,?(P,K, F,) when S = Fp is a source. In this case, s 6~ fKc,,$ = 

s @I f,,,,, for any isomorphisms $, $I’ : K’ --) K. 
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Lemma 3.5. Let 1 @ fK,,$, E Fp &,out~&P,K) for 1 5 i 5 n and let 4 : P --H Ko 
where Ko 2 P and Ko % K. Then 

where N is the number of i for which ker C$ fl Ki = 1 and $0 : Ko 5 K. 

Proof. Note that 1 represents the only double coset of Ki and P in P. By (2.1) we 

get i~,+( 1 @ f;(,,$, ) = 1 @ &,tiO if ker C$ n Ki = 1 and 0 otherwise. The result follows 

0 

Lemma 3.6. Let 1 8 fK,,@$ E Fp @.F,o~~K &P,K), 1 5 i 5 N, and 4 : L * Ko, where 
Ko < P is isomorphic to K. Let ni be the number of double coset representatives 

x E [K,\P/L] satisfying Ki 5 ‘L and Ki n Xker 4 = 1. Then 

Proof. This follows immediately from (2.1) and the comments preceding Lemma 3.5. 

AS in (2.1), we can replace the condition Ki < 5 with Ki 5 Stabp(S) 5 Z 0 

Lemma 3.7. Let K,L 5 P with L # P. Let C$ : L + KO with Ko of the same type 

as K. Zf Np(L) 5 Np(ker 4), then CL,+ annihilates Fp @F,o”~K &P, K). Similarly, tf 

H = L and 71 = I$, the element y in F,OutK in Theorem 2.3 associated with H and 

71 annihilates Fp. 

Proof. Let K’ 5 P, K’ ” K. Suppose that x E [K’\P/L] satisfies K’ < ‘L and 

K’ n Xker C$ = 1. Note that this implies that K’xL = XL is a left coset of L in 

P. Let g E Np(L). Then, K’ < ‘eL and ‘sker4 n K’ = ‘ker4 n K’ = 1, since 

Np(L) 5 Np(ker4). This implies that the number of double coset representatives 

y E [K’\P/L] satisfying K’ < YL and K’ n Yker4 = 1 is a multiple of [Np(L) : 

L], which is divisible by p. Lemma 3.6 then implies that c&l @ f;,,ti) = 0. The 

last statement of the lemma follows by a similar argument (see comments preceding 

Proposition 2.4) 0 

We say K is a retract of H if there is a split surjection C$ : H ++ K. If ker4nK’ = 1 

for all direct summands K’ of H isomorphic to K and every such surjection 4, we say 

K is an absolute retract of H. 

Lemma 3.8. Let K,H < P with [P : H] = p, and H < Np(K’) for all K’ 5 H such 
that K’ g K. Suppose that, for each rc : H -++ K, ker 71 n K’ = 1 for all or none of 

the subgroups K’ of H which are isomorphic to K and are direct summands of H. 
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Then, a subgroup K’ of H with K’ g K contributes to the multiplicity of the principal 

dominant summand of BK in BP if and only f K’ is a retract of P. 

Proof. If K’ is a retract of P, then K’ obviously contributes to the multiplicity of the 

principal dominant summand of BK in BP. 

Suppose K’ 5 H is not a retract of P. For S = FP, Stabp(S) = Np(K’) > H, 

and so we need only consider rt : H -++ K’ when applying Theorem 2.3 with this K’. 
By Corollary 2.5, K’ does not contribute to the multiplicity of the principal dominant 

summand of BK in BP unless K’ is a direct summand of Np(K’). So, assume K’ is 

a summand of Np(K’) and thus also of H. Since H is normal in P any conjugate 

of K’ is also contained in H, and this conjugate will still be a direct summand of 

H. If ker rc intersects all direct summands of H isomorphic to K trivially, we get 

y = CXE[P,Hl c,-l . Since vFP = 0, the result follows in this case. If ker rc intersects 

none of the direct summands of H isomorphic to K trivially, then y = 0. This proves 

the lemma 0 

4. Examples 

The two examples of spaces BP for which we give stable splittings are those for 

which P = r~f and P = rzg, in the notation of Hall and Senior [7]. The first 

group is a non-split extension of Z/4 by Z/S, and is one of the three nonabelian 

groups of order 32 for which BP is indecomposable. The second is a semi-direct prod- 

uct of Z/8 x Z/2 and Z/2, with all cyclic subgroups of order 8 normal in P and 

only one central involution. Of the 32 spaces for which we give splittings in [2], 

these are among the easiest, but the reader will get a flavor of the arguments found 

there. 

In addition to the results of Sections 2 and 3, we require a substantial amount of 

information about P and its subgroups to achieve our splittings, for which we refer to 

Hall and Senior [7]. For each group P we include 

(i) A lattice diagram of normal subgroups, hereafter referred to as the diagram, or 

the diagram for P, K, etc. (see below) 

(ii) The order structure of P, denoted OS(P) (to be explained below). 

(iii) Information concerning the automorphisms of P. 
(iv) Generators and relations determining P. 
(v) A table listing the subgroups K of P along with information about these K 

including some of the above information given for P as well as Np(K) and usually 

KCP(K). 

Each box (circles and diamonds will also be referred to as boxes) of a diagram 

represents one or more normal subgroups of K isomorphic to the group listed in the 

bottom half of the box, under the line. The group listed in the top half of the box, over 

the line, is the quotient of K by the normal subgroup listed under the line. If there are 

parentheses and an exponent around the ‘fraction’ in a box, the exponent denotes the 
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number of subgroups represented by the box. Nonabelian groups will be labelled using 

the notation of [7]. Abelian groups will be labelled by their invariants. For example, 

l3 = (Z/2)3 while 211 = Z/4 x (Z/2)2. 

Bold boxes denote characteristic subgroups. Circles denote a member of the ascend- 

ing central series. Diamond shaped boxes represent the derived series. 

A number directly below a box tells us how many of the subgroups in the box below 

(and along the same line) are contained in each of the subgroups above. Similarly, a 

number directly above a box tells us how many of the groups above contain each of 

the groups below. 

The order structure of P gives the number of elements of order 2, 4, 8, etc. For 

example, OS(32Pzf) = (7,24) which means that P, f has seven elements of order 2 

and 24 of order 4 (in addition to the identity). 

The order of AutP is given as a product 11 . t2. Here, ti is the number of automor- 

phisms of P which act as the identity on P/@(P), where Q(P) is the Frattini subgroup 

of P. Also, ti is the order of the kernel of the map AutP -+ Aut(P/@(P)). The order 

of the image, which we denote 9 or 9’(P), is t2 and this will also be the order of the 

image of @,: OutP + Out(P/@(P)). @+ extends to a ring homomorphism F,OutP -+ 

FpOut(P/@(P)) which has image Fp9. The simple F,B-modules will be the same as 

the simple FpOutP-modules under extension of scalars by this ring homomorphism (see 

Lo, P. 1751). 
Generators and relations will be given as in [7]. The square of each generator a; will 

be given as well as commutators [c(i,o~j] = ai,,,‘,’ for i < j. If such a commutator 

is equal to the identity it will not be listed. 

The information in the tables mentioned above (see Table 1) can be inferred from [7] 

directly or through elementary group-theoretic arguments. The first column gives the 

subgroups of P. The second column tells how many copies of a subgroup are designated 

by a particular row of the table. We have only bothered to determine KCp(K) when 

it was trivial to do so or necessary to our calculations. 

We will not always list all the subgroups isomorphic to a given group in the same 

row. The multiplicity number will only apply to the groups designated in that row. 

Also, note that the rows in the table will not necessarily correspond to the boxes in 

the lattice diagrams. 

Finally, we will often put capital letters A,&. . . , or Ai,Bi,. . . , at the very left of 

some of the rows to denote the group or groups in that row. This is just a notational 

convenience and such letters will be used to refer to these groups in the following 

arguments. 

Indecomposable summands will be labelled by vertex and source, unless there is 

some other conventional notation. For example, the principal dominant summand of 

BQs will be denoted XQ~,F~ while the dominant summand of (Z/2)” corresponding 

to the Steinberg module will be denoted L(n), as is customary. Usually, there are at 

most two simple F20ut.K-modules. If there are two, then XK,~ denotes the nonprin- 

cipal dominant summand, S denoting the nontrivial simple FzOutK-module. If K is 

indecomposable, we will write z for the unique nontrivial summand of BK. These 



42 M. Catalan01 Journal of Pure and Applied Algebra III (1996) 31-50 

conventions hold in the tables of Section 5 as well. 

P = 32 I-J 16r,d 

Theorem 4.1. For P = 32rs f, BP is indecomposable. 

Proof. From the diagrams for 16rzd and P, and Table 1, we see that only those sub- 

groups K listed in the last row of Table 1 are direct summands of both K&(K) and 

Np(K). These K are the two direct summands of B isomorphic to Z/2. By Proposi- 

tion 2.4 and Corollary 2.5, these subgroups are the only possible contributors. 

We claim Z/2 is not a vertex of BP. All the involutions of P are contained in Q(P) 
and so there is no split surjection P + Z/2. So, we need only consider H = B when 

applying Theorem 2.3. As K is an absolute retract of B, Lemma 3.8 implies that Z/‘2 

is not a vertex of BP. This proves the theorem 0 

Theorem 4.2. For P = 32r2g, we have 

BP N Bl v 2BZ/2 v Xp,,F, v 2Xp,s, 

where S is the nontrivial simple F,OutP-module. 

Proof. By Proposition 2.4 and Corollary 2.5, we need only consider the subgroups in 

the last row of Table 2 as possible contributors, since P is not a direct product in 
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Table 1 
P = {Cii, 1 5 i 5 5 1 Ctf = l,cCs = U: = Ul,U: = E:,ai = Cts,[Ct2,a4] 

= q,[cc3,cc4] = az,}lAutPI = 2’ .2,OS(P) = (3,4,24) 

Sbgps. K Mult. OS(K) tAut( A+(K) KCp(K) 

A r’d 2 (3,4,8) 8. 2 P K 
B Z/8 x Z/2 1 (3,4,8) 8 2 P K 

Q(P) z/4x z/2 1 (394) 4.2 P K 
Z/S 2 (1,2,4) 4. 1 P B 
Z/S 4 (1,2,4) 4. 1 Ai K 

(Z12Y 1 (3) 1 .6 P B 
Z/4 2 (1>2) 2.1 P 

z/2 1 (1) 1 P P 
z/2 2 (1) 1 B B 

Table 2 
P = {aj,l 5 i 5 4 1 ~2: = mz = cc: = l,Ui = M1,[E2,ct3] = 

a,}, lAutP/ = 24 6,OS(P) = (7,8,16) 

Sbgps. K Mult. OS(K) IAut(K)I ?/P(K) KCP(K) 

A r2b 
Bi T2d 
C, Z/8 x Z/2 

r2a2 

r2al 

z/4 x z/2 

Z(P)Z/8 

Zl8 

z/4 

z/4 
w2)2 

P’ z/2 

z/2 

3 

(7>8) 
(3,481 
(3,4,8) 

Cl>61 
(5>2) 
(3,4) 
(1,2,4) 
h2,4) 

(I,21 
Cl,21 
(3) 

(1) 
(1) 

23 ‘6 P P 
23. 2 P P 
23 I 2 P K 

4.6 P P 
4.2 P P 

4.2 P Ci 
4. I P P 

4.1 P C, 

2.1 P P 

2.1 P G 
1 .6 P Ct 

1 P P 

1 Ci Ci 

a nontrivial way. We claim that Z/2 is a vertex of BP and BZ/2 is a summand of 

multiplicity two in BP. 
From the diagram for P and the table, we see that there are three subgroups of P 

isomorphic to (Z/2)* and all contain P’, which is the commutator subgroup and the 

one central involution of P. So, these three subgroups will each contain two of the 

subgroups K in the last row of the table and each of these pairs will form a conjugacy 

class, whose representatives we will denote Kt, K2, and Ks. By Lemma 2.1, we have 

that F2 @ F20ut~&P,K) is three-dimensional. From the order structures of the groups 

of index two in P and the diagram for P, we get that A contains all the subgroups K 
and each Bi and Ci contain a unique conjugacy class of such K. We number Bi and 

Ci so that Ki represents the conjugacy class contained in Bi n Ci, for 1 5 i 5 3. 

We have that a homomorphism z : P * K with kernel Bi or C’i will satisfy ker rc n 

Kj = 1 if and only if i # j. By Theorem 2.3, we get that each Ki contributes to the 
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multiplicity 

P=32l-,g 

of BZ/2 in BP, and so Z/2 is a vertex. When computing A via Definition 2.2, we 

need only consider L = P or L = Cj, since these are the only subgroups of P which 

contain any of the groups Stabp(Fz). If 4 : P -n K1 with kernel Bj or Cj, we get 

b,c# @ f&$4 ) = 
1 c3 fK,,$, if i # .A 

0 if i = j, 

by Lemma 3.5. From this, one easily sees that A < c’& l@fKt,k) and cf=, l@fK,,+z 

is annihilated by any [p,b as above. If ker 4 = A, then (2.1) gives ip,+ . fK(,,$; = 0 

since the condition Ki n Xker 4 = 1 cannot be satisfied. 

Next, consider L = Cf. Since ker 4 g Z/8, we see from Table 2 that ker 4 is normal 

in P. By Lemma 3.7, cc,,4 annihilates FZQ~ It follows that 

Since the endomorphism ring of Fz is F2, Lemma 3.2 implies that ,f(P,K, F2) is two- 

dimensional over its endomorphism ring. 
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To finish the proof, we need only consider the dominant summands of BP. From the 

diagram for P, we see that P/@(P) 2 (Z/2)2, and from [7], we have that Y(P) is of 

order six. So, @+ : OutP + Out(P/@(P)) is smjective. There are two absolutely simple 

F20ut(P/@(P))-modules, F2 and the Steinberg module St, and F2 is the endomorphism 

ring for both. So, there are two simple F,OutP-modules, F2 and S, and the latter is 

two-dimensional over its endomorphism ring. The corresponding summands appear with 

multiplicity one and two respectively and the theorem follows. 0 

5. Tables 

In the table of splittings, we have omitted the Bl summand. Also, we have the 

following alternative descriptions of some of the spectra which appear. 

BZ/2 -L(l) BA4 = 4Z/2)2,F2 W) = qz/2)2,st 

X&F2 2~ BP=2(b) XQg,Fz - B=2(Fs) xQ& = c-‘(Bs3/BN) 

- 
L(3) = X(Z/2)3,.9 L(2) v L(3) P M(3) BP N &,FZ 

XTxa,,Fz p Bp=2(F31) XTm,Fz - B=3(b) XTsa2,F2 = B=3(Fu) 

Here, L(n) N C-” Sp2”So/Sp 2”-‘So and the N which appears in XQ8,s is the normalizer 

of the maximal torus of S3 (see [13]). In addition, B(&(Fs) o &(Fs)) is stably 

equivalent to Bl V BA4 V Xrsa,,r2 and this splitting is complete (compare with [4, p. 

4931). The equivalences Xrsa,,r2 Y BP?LC~(F~~) and Xrsal,r2 E BSL3(Fi7) can be found 

in [13], and the equivalence Xrsa2,F2 N BSLs(F7) in [ll, Ch. 51. The simple FzOutP- 

module S which appears in the notation Xp,s is two-dimensional for all P. It is often the 

pullback of the two-dimensional Steinberg module. The modules Si and S2 appearing in 

the entries for P = rsal and P = Tgz2 are four-dimensional. For more details, see [2, 

pp. 153, 1561. The modules S and S’ appearing in the summands X~z,2j3,s and X(Z,~)~J~ 

are the standard three-dimensional representation of (Z/2)3 and its contragredient. We 

have the following more well-known names for some of the groups: 

T2k E QD32, T3e 2 Z/4s Z/2, rsal Z E(4)‘, Psa2 g E(4)-, 

fial = 032, Tsa2 g SD32, r8a3 E Q32. 

In the table of series, the series appear in family order, except where the series given 

is not that of an indecomposable summand. These appear at the end of the table. If a 

series is too long to fit in the table, it appears after the table. The power of t given at 

the left of the leading coefficients indicates that all lower powers of t have coefficient 0. 

If dots (. . .) appear after the coefficients, one is to assume that the, hopefully obvious, 

pattern continues. In particular, 

(1 2 12 3...) =(l 2 12 3 2 3 4 3 4 5...) 

(1 10 O...) =(l 1 0 0 1 1 0 O...) 
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Finally, &(t),_&(t), and M3(t) are the Poincart series for L(2), L(3) and M(3) = 

L(3) V L(2) respectively. The first two of these appear in the table and M3(t) = 

L3G) +L20)- 

Table of splittings for groups of order 32 

P The complete splitting of p 

fif 

r,g 

hh 

r2i 

fijl 

fij2 

T2k 

fib 

ml 

fi c2 

r3dl 

fid2 

fie 

fif 

rsal 

fi a2 

&al 

f&2 

r7al 

fi a2 

r7a3 

r8al 

r0a2 

r0a3 

~ - 
BZl2 ” BZl4 ” xz,4x(z/2)‘,S ” x~,F, 

2W2 ” &,F, ” ‘=,S 

2BZ/4 ” XP> F2 ” =P.S 

BZl4 V XP, F, 

BZ/2”~(2)“BZ/~VXZj2xZj4,~, vxZ/4x(Z/2)2,S vx~,Fz 

W8 ” XP,F~ 

BZl2 ” XP. F> 

3BZi2 ” =16fib,S ” Xp,F, 
--- 
82/2 ” BZ/4 ” BA4 ” 4L(2) V 4L(3) V XCz,2jx,s ” XtZ,2jx,su V xp,~~ 

BZl4 “XQ& ” xQ8 x 212,s “-?p,F2 

BZ/4 ” XP.F, 

BZ/4 V X, F 
~ r 
BZl2 ” BZl4 ” X16rzb,S ” +Z/4y,s ” XPJ, 

i?F 

3BZ/2 ” 8L(2) v gL(3) v 2X&,& ” Xp,, ” =P,S 

xQ, Fz ” 3xQ8, S ” xF, Fz 2 
3Bz/2 v 5L(2) ” 4L(3) v %&,F, ” XZ/2xZ/4,F, ” xZ/4x(Z12)2,S ” xP,F, 

BZl2 “Lc2) v XZ/2~Z/4,FZ ” XQ8,F2 ” wQd vxZ/4x(Z/2)~,S ” x~>F, 

2Bz/2 " w) "w) vxZ/4x(Z/2)2,S vxP,Fz 

2BZ/2 V 4L(2) V 4L(3) “Xp,F, 

IF 

8212 V 2L(2) V 2L(3) VXp,F2 VXp,,s 

__ _ 
4BZj2 V 5BA4 V 12L(2) V 12L(3) ” Xp,~Z ” 4Xp,S, ” 4X,,, 

4BZj2 ” Xp,, ” ~XPJ, ” ~XP,S, 

-- 
3BZl2 ” BA4 ” 4w v 4w ” x(z,2)3,S ” X(Z/Z)~,S” ” xl6fibS ” XP,FZ 

2BZl2”xQ,s vxQ8.z/2,S “x16&b,S “xp,Fz 

-- 
8212 V BZJ4 V 4L(2) V 4L(3) V Xp,~, 

BZ/2 V 4L(2) V 4L(3) V Xp,F2 

FiF 

2BZ/2 V 2L(2)“Xp,F, 

BZl2 V L(2) ” x,,,S ” XP,, 

2XQs,S v XP.F2 
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Tabie of Poincari series 

Spec. P - series Lead.coef. 

w/2” ) 
L(2) 

BA4 

‘b.F, 
xQ8A 
XQ**S 

xZ/2 x Z/4, F2 

L(3) 

XW2P.S 

qz/2)3,S’ 

xz14~(z/2)2,S 

%/4S,S 

‘Q, x 212, S 

X16T2h,S 

%f& 

XM, 

XT202 

X 
GJJ,F, 

XI-, k, Fz 

xfi b, FZ 

XhF2 

XfiC2JZ 

Xfid,,Fl 

XWhF, 

x~, e, FZ 

Xhb,.F> 

f/(1 - t) t(1 1 1 l.‘.) 

f4/(l - t)(l - 8) tq1 1 1 2 2 2.‘.) 

(I2 + 8 - t4)/(l - t)(l - t3) tq1 2 1 2 3.‘.) 

(t2 + t3 - t4)/( 1 - t)( 1 - t3) tq1 2 12 3...) 

(13 + t4)/(1 - t4) t’(l 10 O...) 

(I + t2yg - f4) t(l 1 0 o-..) 

?*/(I - ty tq 1 2 3 4 .) 

t” + t12 + $3 + 2t14 + t’s + $6 + t” 
(1 - fJ)(l - t6)(1 -t') 

see Pi(t) below 

see Pz(t) below 

?/(l - t)*(l - t3) 

t4/(1 - t)(l - t3) 

(t2 + G)/(l - I)(1 - 6) 

(t2 + 9)/( 1 - t)( 1 - t4) 

(t + t2 + t3 + t4 - t5 - 2t7) 

(I-t)3(1+12)(1+t+t2) 

t/(1 - t)* 

t2 i t3 - tS 

t’yl 1 1 2 2 2. ‘.) 

fS(1 2 2 4 5 5 6) 

t’(1 1 2 4 3 4 6) 

t5(1 2 3 5 7 9) 

t‘y1 1 1 2 2 2. .) 

S(122234) 

tq1 1 1 2 3) 

t(1 3 5 8 11 14 17) 

t( 1 2 3 4. .) 

r*(l 2 3 4 6 7 9) 

t(1 2 3 4.,.) 

t(l 1123322) 

(1 - t)*(l + t)(1 - 9) 

f/(1 - ty 

f - t2 +23 

(1 - t)ql + fZ) 

t3 - t5 

(1 - t)*(l - t4) 

see P3(t) below 

t3 + t4 
(1 - t)(l - t4) 

t/(1 - ty 

t/(1 - ty 

13 + t4 + t5 - t’ 
(1 - f3)(1 - t4) 

2t - 2t2 + 2t3 - t4 

(1 - t)*(l + f2) 

t3 + 222 

(1 - t)*(l + 9) 

t3 + 4t4 - 3t5 

(1 - C)2(1 - t3) 
- 4M3(t) 

tq1 2 2 2 4 4 4) 

tq1 2 2 3 5 5 7) 

C3(1 2 2 2 3 4 4) 

t(1 2 3 4...) 

?(I 2 3 4--,) 

t3(1 1 1 1 1 2 2) 

t(2 2 2 3 4 4 4) 

t*(2566811 14) 

t3(1 2 4 7 10 14 18) 
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Table of Poincark series (continued) 

Spec. P - series 

t* _ + - t6 _ t7 

(1 - t)yl - @)(l + t*) 

see PA(t) below 

t+f-t5 
(1 - t)3(1 + t2) 

- 4Mdt) 

3t - 22 + 2t3 - f4 

(1 - t)ql + t*) 

same as E& 

see Ps(t) below 

t3 + t4 + t6 + t’ 

(1 - S)(l - S)(l - t4) 

t2 + 3t3 + 4t4 + 3tS + 2ts - t’0 

(1 - G)(l -t*) 

t6 + t9 

(1 - t)(l - ts) 

12 + t3 + t4 + t5 

(1 - t)(l - ts) 

see PG(t) below 

t3 - ts + t’ + t8 
(1 - t)(l - ts) 

2t2 - t4 

(1 - t)yl + t) 
- 4Mt) 

t - t2 + 2t3 - t4 

(1 - t)ql + t*) 
-@3(t) 

1 + t2 + t5 

(1 - t)ql + S)(l + t4) 
-1 

t* + t3 - t4 
(1 - t)(l - 9) 

t3 + t4 + t5 - t’ 
(1 - G)(l - t4) 

(t3 + t4)/(1 - t4) 

(t + t* + t4) 
(1 - t)ql + 9) 

(3S + 2t3 - t4 - t5) 

(1 - t)*(l + t2) 

Lead.coef 

ty1 3 4 5 7 9 11) 

t(l 3 6 8 12 16 19) 

t(l 3 5 4 8 12 16) 

t(3 4 4 6 9 9 8) 

t(2 2 2 4 6 6 7) 

t3(l 1 1 3 4 4 6) 

t2(1 3 5 6 5 6 7) 

t6(1 1 1 2 2 2 2) 

tZ(1234444) 

t3(1 1 2 3 3 5 7) 

Q(1 1 0 0 1 2 2) 

t2(2 4 3 6 10 14 19) 

t(l 2 4 3 6 9 9) 

t(2 3 4 4 5 6 6) 

tq1 2 1 2 3.. .) 

t3(1 1 1 1 1 2) 

t3(1 1 0 0. .) 

t(1 3 4 5 7 9 10) 

t*(3 5 10 13 20 24 33) 

Xr4.2.F2 v ~-‘%vQS 
t3 + 7t4 - 5t5 + t6 - 2ts + t9 

t)ql 
- 8P3(t) t3(1 1 4 

t3) 
8 11 

(1 
17) 

- - 

Xh,s, VXm,,sz 
t4 + t5 + t6 + t’ 

-L?(t) 3&(t) - t3)(1 Cd) ty1 2 3 3 3 3 (1 t)(l 2) - - - 
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f?(t) = 

t5 + 2t6 + 2t7 + 4t8 + 4t9 + 3t'O + 3t" + t12 - $4 - $5 - t'6 - $7 

(1 - t4)(1 - t6)(1 - t7) 

P2(t) = 
t7 + t8 + 2tg + 4P + 2t” + 3P + 3P + t’5 - t’7 

(1 - t4)(1 - t6)(1 - 9) 

P3(t) = 
2t2 - t4 t2 + t3 - t4 

(1 - t)j(l + t) - (1 - t)(l - t3) 
- 4M3(t) - pi(t) - P2(t) 

P4(t) = 
1 + t2 + t3 1 - t2 - t3 + 2t5 

(1 - t)3(1 + t)(l + t2) - (1 - t)2(1 - t3) - 2M3(t) 

P5Ct) = 
2t - 2t2 + 4t3 - 2t4 + 2t5 - t7 + t8 - tg 

(1 - t)2(1 + tq2(1 - t3) 

P6(t) = 
t3 + 4t4 + 3t5 + 5t6 + 2t7 - t8 - 2t’O 

(1 - t)(l + t2)(1 - t3)(1 - t4) 
- 4M3(t) - P1(t) - PZ(t) 
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